Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Curr Drug Metab ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38509677

RESUMO

BACKGROUND: BK virus (BKV) infection is an opportunistic infectious complication and constitutes a risk factor for premature graft failure in kidney transplantation. Our research aimed to identify associations and assess the impact of single-nucleotide polymorphisms (SNPs) on metabolism-related genes in patients who have undergone kidney transplantation with BKV infection.

Material/Methods: The DNA samples of 200 eligible kidney transplant recipients from our center, meeting the inclusion criteria, have been collected and extracted. Next-generation sequencing was used to genotype SNPs on metabolism-associated genes (CYP3A4/5/7, UGT1A4/7/8/9, UGT2B7). A general linear model (GLM) was used to identify and eliminate confounding factors that may influence the outcome events. Multiple inheritance models and haplotype analyses were utilized to identify variation loci associated with infection caused by BKV and ascertain haplotypes, respectively.

Results: A total of 141 SNPs located on metabolism-related genes were identified. After Hardy-Weinberg equilibrium (HWE) and minor allele frequency (MAF) analysis, 21 tagger SNPs were selected for further association analysis. Based on GLM results, no confounding factor was significant in predicting the incidence of BK polyomavirus-associated infection. Then, multiple inheritance model analyses revealed that the risk of BKV infection was significantly associated with rs3732218 and rs4556969. Finally, we detect significant associations between haplotype T-A-C of block 2 (rs4556969, rs3732218, rs12468274) and infection caused by BKV (P = 0.0004).

Conclusions: We found that genetic variants in the UGT1A gene confer BKV infection susceptibility after kidney transplantation.

2.
Pharmacol Res ; 200: 107051, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190956

RESUMO

Renal interstitial fibrosis/tubular atrophy (IF/TA) is a prominent pathological feature of chronic allograft dysfunction (CAD). Our previous study has demonstrated that epithelial-mesenchymal transition (EMT) plays a significant role in shaping the development of IF/TA. Nuclear SET domain (NSD2), a histone methyltransferase catalyzing methylation at lysine 36 of histone 3, is crucially involved in the development and progression of solid tumors. But its role in the development of renal allograft interstitial fibrosis has yet to be elucidated. Here, we characterize NSD2 as a crucial mediator in the mouse renal transplantation model in vivo and a model of tumor necrosis factor-α (TNF-α) stimulated-human renal tubular epithelial cells (HK-2) in vitro. Functionally, NSD2 knockdown inhibits EMT, dynamin-related protein 1 (Drp1)-mediated mitochondrial fission in mice. Conversely, NSD2 overexpression exacerbates fibrosis-associated phenotypes and mitochondrial fission in tubular cells. Mechanistically, tubular NSD2 aggravated the Drp-1 mediated mitochondrial fission via STAT1/ERK/PI3K/Akt signaling pathway in TNF-α-induced epithelial cell models. Momentously, mass spectrometry (MS) Analysis and site-directed mutagenesis assays revealed that NSD2 interacted with and induced Mono-methylation of STAT1 on K173, leading to its phosphorylation, IMB1-dependent nuclear translocation and subsequent influence on TNF-α-induced EMT and mitochondrial fission in NSD2-dependent manner. Collectively, these findings shed light on the mechanisms and suggest that targeting NSD2 could be a promising therapeutic approach to enhance tubular cell survival and alleviate interstitial fibrosis in renal allografts during CAD.


Assuntos
Nefropatias , Transplante de Rim , Humanos , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Dinâmica Mitocondrial , Domínios PR-SET , Fibrose , Aloenxertos/metabolismo , Transição Epitelial-Mesenquimal , Fator de Transcrição STAT1/metabolismo
3.
Heliyon ; 10(1): e24028, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38230243

RESUMO

Objective: To investigate the role of Interleukin-34 (IL-34) in acute T cell-mediated rejection (TCMR) following renal transplantation. Methods: The mice acute TCMR model of renal transplantation was established and identified by hematoxylin and eosin (HE) and immunohistochemistry (IHC) staining. Then, IHC staining of IL-34 was also performed to determine the expression of IL-34 in allografts. Recipients were infected with IL-34 overexpression adeno-associated virus, infection efficiency of which was estimated by enzyme linked immunosorbent assay (ELISA), Western blot, and immunofluorescence. HE and IHC staining were used to estimate the grades of TCMR. Flow cytometry was performed on lymphocytes in spleens of recipients including regulatory T cells (Tregs) and M2 macrophages. The expression of cytokines in vivo was analyzed by Mouse Cytokine Grp I Panel. Finally, Tregs and M2 macrophages were cultured in vitro and treated with IL-34 to observe the effects of IL-34 on the differentiation of the cells. Results: The mouse TCMR model was successfully established by HE, periodic acid shiff (PAS), CD4 and CD8 IHC staining. The expression of IL-34 was significantly decreased in allografts with TCMR. BALB/c mice were successfully infected with IL-34 overexpression adeno-associated virus. Subsequently, the grade of rejection in mice TCMR model was evaluated by HE and IHC staining according to Banff criteria. It is suggested that the grade of TCMR in IL-34 overexpressed mice was significantly decreased. IHC staining and Flow cytometry showed that the proportion of Tregs and M2 macrophages in the spleens and allografts were significantly increased in IL-34 overexpressed mice. Serum levels of interferon-gamma (IFN-γ), IL-17 and tumor necrosis factor-alpha (TNF-α) were downregulated in IL-34 overexpressed mice. Moreover, IL-34 could promote macrophage M2 polarization, while failed to promote differentiation of naïve T cells into Tregs in vitro. Conclusion: Overexpression of IL-34 may attenuate the progression of TCMR episodes in allografts by increasing the polarization of M2 macrophages in the spleens and allografts, which may become a potential therapeutic strategy for TCMR.

4.
Ren Fail ; 46(1): 2300303, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38263697

RESUMO

BACKGROUND: The assessment of left ventricular (LV) remodeling and its association with mineral and bone disorder (MBD) in kidney transplant recipients (KTRs) have not been systematically studied. We aimed to evaluate LV remodeling changes one year after kidney transplantation (KT) and identify their influencing factors. METHODS: Ninety-five KTRs (68 males; ages 40.2 ± 10.8 years) were followed before and one year after KT. Traditional risk factors and bone metabolism indicators were assessed. Left ventricular mass index (LVMI), left ventricular ejection fraction (LVEF) and left ventricular diastolic dysfunction (LVDD) were measured using two-dimensional transthoracic echocardiography. The relationship between MBD and LV remodeling and the factors influencing LV remodeling were analyzed. RESULTS: One year after KT, MBD was partially improved, mainly characterized by hypercalcemia, hypophosphatemia, hyperparathyroidism, 25-(OH) vitamin D deficiency, elevated bone turnover markers, and bone loss. LVMI, the prevalence of left ventricular hypertrophy (LVH), and the prevalence of LVDD decreased, while LVEF increased. LVH was positively associated with postoperative intact parathyroid hormone (iPTH) and iPTH nonnormalization. △LVMI was positively associated with preoperative type-I collagen N-terminal peptide and postoperative iPTH. LVEF was negatively associated with postoperative phosphorous. △LVEF was negatively associated with postoperative iPTH. LVDD was positively associated with postoperative lumbar spine osteoporosis. Preoperative LVMI was negatively associated with △LVMI and positively associated with △LVEF. Advanced age, increased BMI, diabetes, longer dialysis time, lower albumin level, and higher total cholesterol and low-density lipoprotein levels were associated with LV remodeling. CONCLUSIONS: LV remodeling partially improved after KT, showing a close relationship with MBD.


Assuntos
Transplante de Rim , Masculino , Humanos , Volume Sistólico , Função Ventricular Esquerda , Remodelação Ventricular , Minerais , Hipertrofia Ventricular Esquerda
5.
Clin Nephrol ; 101(2): 71-81, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38126728

RESUMO

BACKGROUND: The status of mineral and bone disorder (MBD) after kidney transplantation is not fully understood, and the assessment of abnormal mineral and bone metabolism in kidney transplant recipients (KTRs) has not been standardized. MATERIALS AND METHODS: We performed a retrospective analysis of 292 KTRs in our center. The levels of biochemical markers of bone metabolism and bone mineral density (BMD) were assessed. We evaluated the influencing factors of BMD using linear regression analysis. And correlation test was used for the correlation analysis between bone metabolism indicators and other indicators. RESULTS: Postoperative MBD mainly manifested as hypercalcemia (8.9%), hypophosphatemia (27.1%), low levels of 25-hydroxyvitamin D(25(OH)vitD) (67.0%), hyperparathyroidism (50.6%), and high levels of bone turnover markers (BTMs). The prevalence of osteopenia/osteoporosis in the femoral neck (FN) and lumbar spine (LS) was 20.1%/2.8% and 26.1%/3.6%, respectively. Multivariate analysis indicated that FN BMD was positively associated with body mass index (BMI) and negatively associated with acute rejection history (p < 0.05); while LS BMD was positively associated with BMI, and negatively associated with intact parathyroid hormone (iPTH) (p < 0.05). Biochemical markers of bone metabolism were affected by age, sex, preoperative dialysis mode and time, postoperative time, transplanted kidney function, and iPTH levels. LS BMD was negatively correlated with iPTH and BTMs (p < 0.05). CONCLUSION: MBD persisted after kidney transplantation. Decreased bone mass was associated with persistent hyperparathyroidism, acute rejection history, low BMI, advanced age, and menopause. Dynamic monitoring of bone metabolism index and BMD helps to assess MBD after kidney transplantation.


Assuntos
Hiperparatireoidismo , Transplante de Rim , Feminino , Humanos , Estudos Retrospectivos , Transplante de Rim/efeitos adversos , Diálise Renal , Densidade Óssea , Hormônio Paratireóideo , Biomarcadores , Hiperparatireoidismo/epidemiologia , Hiperparatireoidismo/etiologia
6.
Front Genet ; 14: 1276963, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028591

RESUMO

Background: Interstitial fibrosis and tubular atrophy (IFTA) are the histopathological manifestations of chronic kidney disease (CKD) and one of the causes of long-term renal loss in transplanted kidneys. Necroptosis as a type of programmed death plays an important role in the development of IFTA, and in the late functional decline and even loss of grafts. In this study, 13 machine learning algorithms were used to construct IFTA diagnostic models based on necroptosis-related genes. Methods: We screened all 162 "kidney transplant"-related cohorts in the GEO database and obtained five data sets (training sets: GSE98320 and GSE76882, validation sets: GSE22459 and GSE53605, and survival set: GSE21374). The training set was constructed after removing batch effects of GSE98320 and GSE76882 by using the SVA package. The differentially expressed gene (DEG) analysis was used to identify necroptosis-related DEGs. A total of 13 machine learning algorithms-LASSO, Ridge, Enet, Stepglm, SVM, glmboost, LDA, plsRglm, random forest, GBM, XGBoost, Naive Bayes, and ANNs-were used to construct 114 IFTA diagnostic models, and the optimal models were screened by the AUC values. Post-transplantation patients were then grouped using consensus clustering, and the different subgroups were further explored using PCA, Kaplan-Meier (KM) survival analysis, functional enrichment analysis, CIBERSOFT, and single-sample Gene Set Enrichment Analysis. Results: A total of 55 necroptosis-related DEGs were identified by taking the intersection of the DEGs and necroptosis-related gene sets. Stepglm[both]+RF is the optimal model with an average AUC of 0.822. A total of four molecular subgroups of renal transplantation patients were obtained by clustering, and significant upregulation of fibrosis-related pathways and upregulation of immune response-related pathways were found in the C4 group, which had poor prognosis. Conclusion: Based on the combination of the 13 machine learning algorithms, we developed 114 IFTA classification models. Furthermore, we tested the top model using two independent data sets from GEO.

7.
Ren Fail ; 45(2): 2276382, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936391

RESUMO

BACKGROUND: The assessment and prevention of vascular calcification (VC) in kidney transplant recipients (KTRs) have not been systematically studied. We aimed to evaluate VC change one year after kidney transplantation (KT) and identify their influencing factors. METHODS: 95 KTRs (68 males; ages 40.2 ± 10.8 years) were followed one year after KT. Changes in bone mineral density (BMD) and bone metabolism biomarkers were assessed. Coronary artery calcification (CAC) and thoracic aortic calcification (TAC) were measured using 192-slice third-generation dual-source CT. The relationship between bone metabolism indicators and VC and the factors influencing VC were analyzed. RESULTS: Postoperative estimated glomerular filtration rate was 79.96 ± 24.18 mL/min*1.73 m2. One year after KT, serum phosphorus, intact parathyroid hormone (iPTH), osteocalcin, type I collagen N-terminal peptide (NTx), type I collagen C-terminal peptide, and BMD decreased, 25-hydroxyvitamin D remained low, and VC increased. Post-CAC and TAC were negatively correlated with pre-femoral neck BMD, and TAC was positively correlated with post-calcium. CAC and TAC change were positively correlated with post-calcium and 25-hydroxyvitamin D. Increased CAC was positively associated with hemodialysis and pre-femoral neck osteopenia. CAC change was positively associated with prediabetes, post-calcium, and pre-CAC and negatively associated with preoperative and postoperative femoral neck BMD, and NTx change. Increased TAC was positively associated with age, prediabetes, preoperative parathyroid hyperplasia/nodule, post-calcium, and post-femoral neck osteopenia. TAC change was positively associated with age, diabetes, pre-triglyceride, pre-TAC, dialysis time, post-calcium and post-iPTH, and negatively associated with post-femoral neck BMD. CONCLUSIONS: Mineral and bone disorders persisted, and VC progressed after KT, showing a close relationship.


Assuntos
Doenças Ósseas Metabólicas , Transplante de Rim , Estado Pré-Diabético , Calcificação Vascular , Masculino , Humanos , Transplante de Rim/efeitos adversos , Cálcio , Colágeno Tipo I , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/etiologia , Calcificação Vascular/metabolismo , Densidade Óssea , Minerais , Peptídeos
8.
BMC Med Genomics ; 16(1): 255, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37867197

RESUMO

BACKGROUND: Renal allograft fibrosis is one of characteristic causes of long-term renal function loss. The purpose of our study is to investigate the association between fibrosis-related genes single nucleotide polymorphism (SNPs) and kidney function in 5 years after kidney transplantation. METHODS: A total of 143 recipients were eligible for screening with 5-year follow-up information and SNP sequencing information from blood samples were included in this study. Minor Allele Frequency (MAF) and Hardy-Weinberg Equilibrium (HWE) analysis was conducted to identify tagger single-nucleotide polymorphisms (SNPs) and haplotypes. SNPs associated with the fifth year chronic kidney disease (CKD) staging were screened by SPSS and the "SNPassoc" package in RStudio and used for subsequent prediction model construction. RESULTS: A total of 275 renal transplant-related SNPs identified after target sequencing analysis. 64 Tagger SNPs were selected, and two SNPs (rs13969 and rs243849) were statistically significant for stage of CKD in 5 years. Finally, a model based on Gender, Age, rs1396, and rs243849 was constructed by multivariate linear regression analysis. Additionally, this model has a good performance in predicting uremia five years after kidney transplantation. CONCLUSION: Two SNPs (rs13969 and rs243849) were identified to be significantly associated with long-term renal allograft function. Based on this, a prediction model for long-term allograft function was established containing Gender, Age, rs1396, and rs243849. However, an independent cohort should be enrolled to validate the predicting performance.


Assuntos
Transplante de Rim , Insuficiência Renal Crônica , Humanos , Rim/fisiologia , Rim/patologia , Polimorfismo de Nucleotídeo Único , Fibrose , Insuficiência Renal Crônica/patologia , Aloenxertos , Genótipo
9.
Ren Fail ; 45(2): 2256418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37905940

RESUMO

BACKGROUND: Iguratimod has been shown to promote bone formation and inhibit bone resorption in rheumatoid arthritis patients. We aimed to explore its effect on bone metabolism and vascular calcification (VC) in kidney transplant recipients (KTRs). METHODS: A post hoc analysis was conducted among the subjects in our previous randomized clinical trial (NCT02839941). Forty-three KTRs completing bone metabolism 52 weeks after enrollment were selected for this analysis, among whom 27 patients received VC examinations. In the iguratimod group, iguratimod (25 mg twice daily) was added adjuvant to the traditional triple regimen. At the 52-week follow-up, the following parameters were assessed: serum calcium, phosphorus, 25-hydroxyvitamin D, intact parathyroid hormone (iPTH), bone alkaline phosphatase (BALP), osteocalcin, type I collagen N-terminal peptide (NTx), type I collagen C-terminal peptide (CTx), bone mineral density (BMD) of the femoral neck and lumbar spine, coronary artery calcification (CAC) and thoracic aortic calcification (TAC). Bone metabolic and VC indices were compared between the two groups using the independent samples t test and Wilcoxon nonparametric test. RESULTS: At 52 weeks after enrollment, the iguratimod group had lower osteocalcin (p = 0.010), BALP (p = 0.015), NTx (p = 0.007), CTx (p = 0.012), CAC (p = 0.080) and TAC scores (p = 0.036) than the control group. There was no significant difference in serum calcium, phosphorus, 25-hydroxyvitamin D, iPTH and BMD between the groups. Iguratimod could reduce bone turnover markers (BTMs) at both high and low iPTH levels. The adverse effect of iguratimod was mild and tolerable. CONCLUSION: Iguratimod is safe, can reduce BTMs and may could attenuate VC in the first year after KT.


Assuntos
Colágeno Tipo I , Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Cálcio , Osteocalcina , Densidade Óssea , Peptídeos , Hormônio Paratireóideo , Biomarcadores , Minerais , Fósforo , Remodelação Óssea
10.
Cell Death Discov ; 9(1): 271, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507403

RESUMO

Chronic allograft dysfunction (CAD) is a major factor that hinders kidney transplant survival in the long run. Epithelial-mesenchymal transition (EMT) has been confirmed to significantly contribute to interstitial fibrosis/tubular atrophy (IF/TA), which is the main histopathological feature of CAD. Aberrant expression of the regulator of calcineurin 1 (RCAN1), recognized as an endogenous inhibitor of the calcineurin phosphatase, has been shown to be extensively involved in various kidney diseases. However, it remains unclear how RCAN1.4 regulates IF/TA formation in CAD patients. Herein, an in vivo mouse renal transplantation model and an in vitro model of human renal tubular epithelial cells (HK-2) treated with tumor necrosis factor-α (TNF-α) were employed. Our results proved that RCAN1.4 expression was decreased in vivo and in vitro, in addition to the up-regulation of Yin Yang 1 (YY1), a transcription factor that has been reported to convey multiple functions in chronic kidney disease (CKD). Knocking in of RCAN1.4 efficiently attenuated chronic renal allograft interstitial fibrosis in vivo and inhibited TNF-α-induced EMT in vitro through regulating anti-oxidative stress and the calcineurin/nuclear factor of activated T cells cytoplasmic 1 (NFATc1) signaling pathway. In addition, suppression of YY1 mediated by shRNA or siRNA alleviated TNF-α-induced EMT through abolishing reactive species partly in an RCAN1.4-dependent manner. Notably, we confirmed that YY1 negatively regulated RCAN1.4 transcription by directly interacting with the RCAN1.4 promoter. In addition, histone deacetylase 2 (HDAC2) interacted with YY1 to form a multi-molecular complex, which was involved in TNF-α-induced RCAN1.4 transcriptional repression. Therefore, RCAN1.4 is suggested to be modulated by the YY1/HDAC2 transcription repressor complex in an epigenetic manner, which is a mediated nephroprotective effect partly through modulating O2⋅- generation and the calcineurin/NFATc1 signaling pathway. Thus, the YY1-RCAN1.4 axis constitutes an innovative target for IF/TA treatment in CAD patients.

11.
Ren Fail ; 45(1): 2220418, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37288756

RESUMO

Our research explores the role of M1 macrophage polarization in endothelium-to-myofibroblast transition (EndMT) and chronic allograft dysfunction (CAD). GSE21374 transcriptome sequencing data were obtained. Transplanted nephrectomy specimens from CAD patients were collected and studied to explore the infiltration of M1 and M2 macrophages using immunofluorescence, PCR, and Western blotting (WB). A co-culture model of M1 macrophages, polarized from mouse bone marrow-derived macrophages (BMDM) or Raw264.7, and aortic endothelial cells was established, and EndMT was tested using PCR and WB. RNA-sequencing was performed on the macrophages from the mouse BMDM. The TNF-α secreted from the polarized M1 macrophages was verified using ELISA. Based on the GEO public database, it was observed that macrophages were significantly infiltrated in CAD allograft tissues, with CD68(+) iNOS(+) M1 macrophages significantly infiltrating the glomeruli of allograft tissues, and CD68(+)CD206(+) M2 macrophages notably infiltrating the allograft interstitial area. The mRNA expression of the M1 macrophage marker inducible nitric oxide synthase (iNOS) was significantly increased (p < 0.05) and M1 macrophages were found to significantly promote the EndMT process in vitro. RNA-Sequencing analysis revealed that TNF signaling could be involved in the EndMT induced by M1 macrophages, and in vitro studies confirmed that TNF-α in the supernatant was significantly higher. The renal allograft tissues of CAD patients were found to be significantly infiltrated by M1 macrophages and could promote the progression of CAD by secreting the cytokine TNF-α to induce EndMT in endothelial cells.


Assuntos
Transplante de Rim , Fator de Necrose Tumoral alfa , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Transplante de Rim/efeitos adversos , Células Endoteliais/metabolismo , Miofibroblastos/metabolismo , Macrófagos/metabolismo , Aloenxertos , Endotélio/metabolismo , RNA/metabolismo
12.
Ren Fail ; 45(1): 2210231, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37183797

RESUMO

BACKGROUND: The assessment and prevention of mineral and bone disorder (MBD) in kidney transplant recipients (KTRs) have not been standardized. This study aimed to evaluate MBD one year after kidney transplantation (KT) and identify the influencing factors of MBD. METHODS: A total of 95 KTRs in our center were enrolled. The changes in bone mineral density (BMD) and bone metabolism biochemical markers, including serum calcium (Ca), phosphorus(P), 25-hydroxyvitamin D(25(OH)vitD), intact parathyroid hormone (iPTH), bone alkaline phosphatase, osteocalcin (OC), type I collagen N-terminal peptide and type I collagen C-terminal peptide (CTx), over one year after KT were assessed. The possible influencing factors of BMD were analyzed. The relationships between bone metabolism biochemical markers were evaluated. The indicators between groups with or without iPTH normalization were also compared. RESULTS: MBD after KT was manifested as an increased prevalence of hypophosphatemia and bone loss, persistent 25(OH)vitD deficiency, and partially decreased PTH and bone turnover markers (BTMs). Femoral neck BMD was positively correlated with body mass index (BMI) and postoperative 25(OH)vitD, and negatively correlated with postoperative PTH. Lumbar spine BMD was positively correlated with BMI and preoperative TG, and negatively correlated with preoperative OC and CTx. BMD loss was positively associated with glucocorticoid accumulation. Preoperative and postoperative iPTH was negatively correlated with postoperative serum P and 25(OH)vitD, and positively correlated with postoperative Ca and BTMs. The recipients without iPTH normalization, who accounted for 41.0% of all KTRs, presented with higher Ca, lower P, higher BTMs, advanced age, and a higher prevalence of preoperative parathyroid hyperplasia. CONCLUSIONS: MBD persisted after KT, showing a close relationship with hyperparathyroidism, high bone turnover, and glucocorticoid accumulation.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Hiperparatireoidismo , Transplante de Rim , Humanos , Biomarcadores , Densidade Óssea , Remodelação Óssea , Estudos de Coortes , Colágeno Tipo I , Glucocorticoides , Transplante de Rim/efeitos adversos , Hormônio Paratireóideo , Peptídeos , Osteoporose
13.
Transl Androl Urol ; 12(3): 375-383, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37032759

RESUMO

Background: Further research needs to be conducted on the role of genetic variables in kidney transplantation fibrosis. In this study, we used next-generation sequencing (NGS) to examine the relationship between matrix metalloproteinase (MMP) genes and single-nucleotide polymorphisms (SNPs) in renal allograft fibrosis. Methods: This study comprised 200 patients, whose complete DNA samples were taken. The SNPs in MMP genes were identified using targeted NGS. Hardy-Weinberg equilibrium (HWE) and minor allele frequency (MAF) tests were conducted, followed by a linkage disequilibrium (LD) analysis. Finally, the SNPs and severity of kidney allograft fibrosis were evaluated using different inheritance models. Results: In total, 41 MMP gene-related SNPs were identified using targeted sequencing, and 20 tagger SNPs were retained for further study. The general linear models (GLMs) revealed that sirolimus treatment had a substantial effect on kidney graft fibrosis. The multiple inheritance model analyses revealed that SNP rs9059 of the MMP9 gene was strongly associated with kidney graft fibrosis. The in-vitro experiments showed the MMP9 rs9509 mutation promotes the process of epithelial-mesenchymal transition (EMT) in the human kidney 2 (HK2) cells. Conclusions: The SNP rs9059 is associated with significant kidney allograft pathological changes by promoting EMT progression. Our findings provide insights into the etiology of renal allograft interstitial fibrosis and the MMP9 could be used as a potential treatment target in the future.

14.
Curr Drug Metab ; 24(2): 114-123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36734895

RESUMO

OBJECTIVE: This study was designed to analyze the correlation between single nucleotide polymorphisms (SNP) related to drug metabolism and pharmacokinetics of mycophenolic acid (MPA) during long-term follow-up. MATERIALS AND METHOD: A retrospective cohort study involving 71 renal transplant recipients was designed. Blood samples were collected to extract total DNAs, followed by target sequencing based on next-generation sequencing technology. The MPA area under the curve (AUC) was calculated according to the formula established in our center. The general linear model and linear regression model were used to analyze the association between SNPs and MPA AUC. RESULTS: A total of 689 SNPs were detected in our study, and 90 tagger SNPs were selected after quality control and linkage disequilibrium analysis. The general linear model analysis showed that 9 SNPs significantly influenced MPA AUC. A forward linear regression was conducted, and the model with the highest identical degree (r2=0.55) included 4 SNPs (SLCO1B1: rs4149036 [P < 0.0001], ABCC2: rs3824610 [P = 0.005], POR: rs4732514 [P = 0.006], ABCC2: rs4148395 [P = 0.007]) and 6 clinical factors (age [P < 0.0001], gender [P < 0.0001], the incident of acute rejection (AR) [P = 0.001], albumin [P < 0.0001], duration after renal transplantation [P = 0.01], lymphocyte numbers [P = 0.026]). The most relevant SNP to MPA AUC in this model was rs4149036. The subgroup analysis showed that rs4149036 had a significant influence on MPA AUC in the older group (P = 0.02), high-albumin group (P = 0.01), male group (P = 0.046), and both within-36-month group (P = 0.029) and after-36-month group (P = 0.041). The systematic review included 4 studies, and 2 of them showed that the mutation in SLCO1B1 resulted in lower MPA AUC, which was contrary to our study. CONCLUSION: A total of 4 SNPs (rs4149036, rs3824610, rs4148395, and rs4732514) were identified to be significantly correlated with MPA AUC. Rs4149036, located in SLCO1B1, was suggested to be the most relevant SNP to MPA AUC, which had a stronger influence on recipients who were elder, male, or with high serum albumin. Furthermore, 6 clinical factors, including age, gender, occurrence of acute rejection, serum albumin, time from kidney transplantation, and blood lymphocyte numbers, were found to affect the concentration of MPA.


Assuntos
Transplante de Rim , Ácido Micofenólico , Masculino , Humanos , Idoso , Ácido Micofenólico/uso terapêutico , Transplante de Rim/métodos , Estudos Retrospectivos , Polimorfismo de Nucleotídeo Único , Área Sob a Curva , Albumina Sérica/metabolismo , Imunossupressores/farmacocinética , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo
15.
HLA ; 101(2): 115-123, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373504

RESUMO

The impact of preformed and de novo HLA-DP antibodies after renal transplantation remains controversial and unclear. To address the clinical relevance of HLA-DP antibodies on the outcomes in renal transplantation, we performed a random effect model meta-analysis through a systematic review from inception to December 31, 2021. The outcome was graft loss or acute rejection. Finally five articles were identified as our inclusion criteria. The study which reported 1166 patients included in the final meta-analysis of de novo HLA-DP antibodies after transplantation showed an increased risk of graft loss or acute rejection (OR = 3.6, 95% CI = 1.6-8.10, P = 0.002, I2  = 52%). In the subgroup study, we established that patients with HLA-DP DSA after renal transplantation had a 8.85-fold increased risk of graft loss or acute rejection compared with patients without HLA-DP DSA (p = 0.003).While as for HLA-DP NDSA after renal transplantation, 2.73-fold increased risk of graft loss or acute rejection compared with patients without HLA-DP antibodies (p = 0.04). Besides, the studies which reported 487 patients included in the final meta-analysis of preformed HLA-DP antibodies did not show an increased risk of graft loss or acute rejection (OR = 4.55, 95% CI = 0.79-26.16, P = 0.09, I2  = 57%). The results of our meta-analysis suggested that de novo HLA-DP antibodies especially de novo HLA-DP DSA had a significant deleterious impact on the renal transplant risk of graft loss or acute rejection, while preformed HLA-DP antibodies had a no significant deleterious impact on the risk. The routine detection of HLA-DP antibodies after renal transplantation seems to be very important and may be as one of noninvasive biomarker-guided risk stratification.


Assuntos
Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Antígenos HLA-DP , Rejeição de Enxerto , Alelos , Anticorpos , Antígenos HLA , Isoanticorpos
16.
Front Nutr ; 10: 1274078, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260086

RESUMO

Background: Chronic kidney disease (CKD) is often accompanied by alterations in the metabolic profile of the body, yet the causative role of these metabolic changes in the onset of CKD remains a subject of ongoing debate. This study investigates the causative links between metabolites and CKD by leveraging the results of genomewide association study (GWAS) from 486 blood metabolites, employing bulk two-sample Mendelian randomization (MR) analyses. Building on the metabolites that exhibit a causal relationship with CKD, we delve deeper using enrichment analysis to identify the metabolic pathways that may contribute to the development and progression of CKD. Methods: In conducting the Mendelian randomization analysis, we treated the GWAS data for 486 metabolic traits as exposure variables while using GWAS data for estimated glomerular filtration rate based on serum creatinine (eGFRcrea), microalbuminuria, and the urinary albumin-to-creatinine ratio (UACR) sourced from the CKDGen consortium as the outcome variables. Inverse-variance weighting (IVW) analysis was used to identify metabolites with a causal relationship to outcome. Using Bonferroni correction, metabolites with more robust causal relationships are screened. Additionally, the IVW-positive results were supplemented with the weighted median, MR-Egger, weighted mode, and simple mode. Furthermore, we performed sensitivity analyses using the Cochran Q test, MR-Egger intercept test, MR-PRESSO, and leave-one-out (LOO) test. Pathway enrichment analysis was conducted using two databases, KEGG and SMPDB, for eligible metabolites. Results: During the batch Mendelian randomization (MR) analyses, upon completion of the inverse-variance weighted (IVW) approach, sensitivity analysis, and directional consistency checks, 78 metabolites were found to meet the criteria. The following four metabolites satisfy Bonferroni correction: mannose, N-acetylornithine, glycine, and bilirubin (Z, Z), and mannose is causally related to all outcomes of CKD. By pathway enrichment analysis, we identified eight metabolic pathways that contribute to CKD occurrence and progression. Conclusion: Based on the present analysis, mannose met Bonferroni correction and had causal associations with CKD, eGFRcrea, microalbuminuria, and UACR. As a potential target for CKD diagnosis and treatment, mannose is believed to play an important role in the occurrence and development of CKD.

18.
Free Radic Biol Med ; 193(Pt 2): 579-594, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36356714

RESUMO

Renal interstitial fibrosis and tubular atrophy are essential pathological characteristics of chronic renal allograft dysfunction (CAD). Herein, we revealed that ferroptosis of renal tubular epithelial cells (RTECs) might contribute to renal tubular injury in CAD. Mechanistically, TNF-α induced ferroptosis by inhibiting GPX4 transcription through upregulating IRF1 in RTECs. IRF1 could bind with ZNF350 to form a transcription factor complex, which directly binds to the GPX4 promoter region to inhibit GPX4 transcription. Ferroptotic RTECs might secrete profibrotic factors, including PDGF-BB and IL-6, to activate neighboring fibroblasts to transform into myofibroblasts or induce EMT in adjacent RTECs. In conclusion, our results confirmed a novel role of ferroptosis in renal tubular injury and interstitial fibrosis, thereby providing insights into the pathogenesis of chronic renal allograft interstitial fibrosis during CAD.


Assuntos
Ferroptose , Nefropatias , Transplante de Rim , Humanos , Aloenxertos/metabolismo , Células Epiteliais/metabolismo , Ferroptose/genética , Fibrose , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Nefropatias/metabolismo
19.
Front Mol Biosci ; 9: 890766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655759

RESUMO

Renal fibrosis is a common feature of chronic kidney disease (CKD), and can lead to the destruction of normal renal structure and loss of kidney function. Little progress has been made in reversing fibrosis in recent years. Ferroptosis is more immunogenic than apoptosis due to the release and activation of damage-related molecular patterns (DAMPs) signals. In this paper, the relationship between renal fibrosis and ferroptosis was reviewed from the perspective of iron metabolism and lipid peroxidation, and some pharmaceuticals or chemicals associated with both ferroptosis and renal fibrosis were summarized. Other programmed cell death and ferroptosis in renal fibrosis were also firstly reviewed for comparison and further investigation.

20.
Front Pharmacol ; 13: 865363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35614941

RESUMO

Background: This study aimed to explore the effect and mechanism of iguratimod (IGT) on M1 macrophage polarization and antibody-mediated rejection (ABMR) after renal transplant. Methods: Bioinformatics analysis was performed using three public databases derived from the GEO database. Sprague-Dawley (SD) rats were pre-sensitized with donors of Wistar rats in skin transplantation and a rat renal transplant ABMR model was established from the donors to skin pre-sensitized recipients. Subsequently, IGT was treated on the ABMR model. Routine staining and immunofluorescence (IF) staining were performed to observe the pathological changes in each group and flow cytometry was performed to detect the changes of DSA titers in peripheral blood. In addition, bone-marrow-derived macrophage (BMDM) was extracted and interfered with IGT to explore the effect of IGT in vivo. PCR, IF staining, and Western blot were used to detect the expression of related genes and proteins. Results: Bioinformatics analysis revealed that several immune cells were significantly infiltrated in the ABMR allograft, while M1 macrophage was noticed with the most significance. Results of IF staining and PCR proved the findings of the bioinformatics analysis. Based on this, IGT was observed to significantly attenuate the degree of peritubular capillary vasculitis and arteriolitis in the rat renal transplant ABMR model, whereas it decreases the expression of C4d and reduces the titer of DSA. Results in vitro suggested that M1 macrophage-related transcripts and proteins were significantly reduced by the treatment of IGT in a dose- and time-dependent manner. Furthermore, IGT intervention could remarkably decrease the expression of KLF4. Conclusion: Polarization of M1 macrophages may aggravate ABMR after renal transplant by promoting DSA-mediated endothelial cell injury, and IGT may attenuate the pathogenesis of ABMR by targeting KLF4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...